2017-01-14 09:48:52 -05:00

259 lines
7.0 KiB
JavaScript

// This file contains that retrieve or validate anything related to the current paths ancestry.
import * as t from "babel-types";
import NodePath from "./index";
/**
* Call the provided `callback` with the `NodePath`s of all the parents.
* When the `callback` returns a truthy value, we return that node path.
*/
export function findParent(callback) {
let path = this;
while (path = path.parentPath) {
if (callback(path)) return path;
}
return null;
}
/**
* Description
*/
export function find(callback) {
let path = this;
do {
if (callback(path)) return path;
} while (path = path.parentPath);
return null;
}
/**
* Get the parent function of the current path.
*/
export function getFunctionParent() {
return this.findParent((path) => path.isFunction() || path.isProgram());
}
/**
* Walk up the tree until we hit a parent node path in a list.
*/
export function getStatementParent() {
let path = this;
do {
if (Array.isArray(path.container)) {
return path;
}
} while (path = path.parentPath);
}
/**
* Get the deepest common ancestor and then from it, get the earliest relationship path
* to that ancestor.
*
* Earliest is defined as being "before" all the other nodes in terms of list container
* position and visiting key.
*/
export function getEarliestCommonAncestorFrom(paths: Array<NodePath>): NodePath {
return this.getDeepestCommonAncestorFrom(paths, function (deepest, i, ancestries) {
let earliest;
const keys = t.VISITOR_KEYS[deepest.type];
for (const ancestry of (ancestries: Array)) {
const path = ancestry[i + 1];
// first path
if (!earliest) {
earliest = path;
continue;
}
// handle containers
if (path.listKey && earliest.listKey === path.listKey) {
// we're in the same container so check if we're earlier
if (path.key < earliest.key) {
earliest = path;
continue;
}
}
// handle keys
const earliestKeyIndex = keys.indexOf(earliest.parentKey);
const currentKeyIndex = keys.indexOf(path.parentKey);
if (earliestKeyIndex > currentKeyIndex) {
// key appears before so it's earlier
earliest = path;
}
}
return earliest;
});
}
/**
* Get the earliest path in the tree where the provided `paths` intersect.
*
* TODO: Possible optimisation target.
*/
export function getDeepestCommonAncestorFrom(paths: Array<NodePath>, filter?: Function): NodePath {
if (!paths.length) {
return this;
}
if (paths.length === 1) {
return paths[0];
}
// minimum depth of the tree so we know the highest node
let minDepth = Infinity;
// last common ancestor
let lastCommonIndex, lastCommon;
// get the ancestors of the path, breaking when the parent exceeds ourselves
const ancestries = paths.map((path) => {
const ancestry = [];
do {
ancestry.unshift(path);
} while ((path = path.parentPath) && path !== this);
// save min depth to avoid going too far in
if (ancestry.length < minDepth) {
minDepth = ancestry.length;
}
return ancestry;
});
// get the first ancestry so we have a seed to assess all other ancestries with
const first = ancestries[0];
// check ancestor equality
depthLoop: for (let i = 0; i < minDepth; i++) {
const shouldMatch = first[i];
for (const ancestry of (ancestries: Array)) {
if (ancestry[i] !== shouldMatch) {
// we've hit a snag
break depthLoop;
}
}
// next iteration may break so store these so they can be returned
lastCommonIndex = i;
lastCommon = shouldMatch;
}
if (lastCommon) {
if (filter) {
return filter(lastCommon, lastCommonIndex, ancestries);
} else {
return lastCommon;
}
} else {
throw new Error("Couldn't find intersection");
}
}
/**
* Build an array of node paths containing the entire ancestry of the current node path.
*
* NOTE: The current node path is included in this.
*/
export function getAncestry() {
let path = this;
const paths = [];
do {
paths.push(path);
} while (path = path.parentPath);
return paths;
}
/**
* A helper to find if `this` path is an ancestor of @param maybeDescendant
*/
export function isAncestor(maybeDescendant) {
return maybeDescendant.isDescendant(this);
}
/**
* A helper to find if `this` path is a descendant of @param maybeAncestor
*/
export function isDescendant(maybeAncestor) {
return !!this.findParent((parent) => parent === maybeAncestor);
}
export function inType() {
let path = this;
while (path) {
for (const type of (arguments: Array)) {
if (path.node.type === type) return true;
}
path = path.parentPath;
}
return false;
}
/**
* Checks whether the binding for 'key' is a local binding in its current function context.
*
* Checks if the current path either is, or has a direct parent function that is, inside
* of a function that is marked for shadowing of a binding matching 'key'. Also returns
* the parent path if the parent path is an arrow, since arrow functions pass through
* binding values to their parent, meaning they have no local bindings.
*
* Shadowing means that when the given binding is transformed, it will read the binding
* value from the container containing the shadow function, rather than from inside the
* shadow function.
*
* Function shadowing is acheieved by adding a "shadow" property on "FunctionExpression"
* and "FunctionDeclaration" node types.
*
* Node's "shadow" props have the following behavior:
*
* - Boolean true will cause the function to shadow both "this" and "arguments".
* - {this: false} Shadows "arguments" but not "this".
* - {arguments: false} Shadows "this" but not "arguments".
*
* Separately, individual identifiers can be flagged with two flags:
*
* - _forceShadow - If truthy, this specific identifier will be bound in the closest
* Function that is not flagged "shadow", or the Program.
* - _shadowedFunctionLiteral - When set to a NodePath, this specific identifier will be bound
* to this NodePath/Node or the Program. If this path is not found relative to the
* starting location path, the closest function will be used.
*
* Please Note, these flags are for private internal use only and should be avoided.
* Only "shadow" is a public property that other transforms may manipulate.
*/
export function inShadow(key?) {
const parentFn = this.isFunction() ? this : this.findParent((p) => p.isFunction());
if (!parentFn) return;
if (parentFn.isFunctionExpression() || parentFn.isFunctionDeclaration()) {
const shadow = parentFn.node.shadow;
// this is because sometimes we may have a `shadow` value of:
//
// { this: false }
//
// we need to catch this case if `inShadow` has been passed a `key`
if (shadow && (!key || shadow[key] !== false)) {
return parentFn;
}
} else if (parentFn.isArrowFunctionExpression()) {
return parentFn;
}
// normal function, we've found our function context
return null;
}